Optimize single line to ground fault detection in distribution grid power system using artificial bee colony

نویسندگان

چکیده

The most common power system (PS) distribution network fault, single lineto-ground fault (SLGF), causes residual current (I res) to start an electrical arc and high voltage (HV) three times the rated in other healthy phases. HV from capacitive currents (IC) damages cable insulation PS appliances. Peterson neutral point coil (PC) reduces extinguishes electric arc, but fault) remains below protection devices' threshold. Operations equipment are riskier. PC adaptive eliminates arcs, making safer. This paper detects I faults online using Texas instrument validation MATLAB by artificial bee colony (ABC). discusses detection validation. It improves reliability, device protection, copper savings thousands of tons. ABC intelligently optimizes many mathematical problems. with neural intelligence (AI) algorithm performance (artificial (ABCNN)). new method may improve SLGF detection. first work can stations building (eZdsp F28335-RS232) into program send signals control when occurs without damaging devices, equipment, cables, or outages.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm

Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints....

متن کامل

BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...

متن کامل

Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foragi...

متن کامل

Artificial Bee Colony Optimization for Effective Power System Stabilization

The power system stability has been considered as one of great concerns in the power system domain. Power industries are restructured to provide effective utilization of power to more users at lower prices and better power efficiency. Load demand has increased linearly with the increase in number of users. Since stability phenomena limits the transfer capability of the system, there is a need t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science

سال: 2023

ISSN: ['2502-4752', '2502-4760']

DOI: https://doi.org/10.11591/ijeecs.v31.i3.pp1286-1294